Telegram Group & Telegram Channel
Как можно визуализировать многомерные данные в 2D?

Существует несколько методов. Вот наиболее распространённые:

▪️Метод главных компонент (PCA)
Позволяет не только понизить размерность, но выявить наиболее информативные признаки в данных. Его суть заключается в предположении о линейности отношений данных и их проекции на подпространство ортогональных векторов, в которых дисперсия будет максимальной. Такие вектора называются главными компонентами и они определяют направления наибольшей изменчивости (информативности) данных. Именно эти главные компоненты можно визуализировать в 2D.

▫️Стохастическое вложение соседей с t-распределением (t-SNE)
Это техника нелинейного снижения размерности, хорошо подходящая для вложения данных высокой размерности для визуализации в пространство низкой размерности (двух- или трёхмерное). Метод моделирует каждый объект высокой размерности двух- или трёхмерной точкой таким образом, что похожие объекты моделируются близко расположенными точками, а непохожие точки моделируются точками, далеко друг от друга отстоящими.

#предобработка_данных



tg-me.com/ds_interview_lib/330
Create:
Last Update:

Как можно визуализировать многомерные данные в 2D?

Существует несколько методов. Вот наиболее распространённые:

▪️Метод главных компонент (PCA)
Позволяет не только понизить размерность, но выявить наиболее информативные признаки в данных. Его суть заключается в предположении о линейности отношений данных и их проекции на подпространство ортогональных векторов, в которых дисперсия будет максимальной. Такие вектора называются главными компонентами и они определяют направления наибольшей изменчивости (информативности) данных. Именно эти главные компоненты можно визуализировать в 2D.

▫️Стохастическое вложение соседей с t-распределением (t-SNE)
Это техника нелинейного снижения размерности, хорошо подходящая для вложения данных высокой размерности для визуализации в пространство низкой размерности (двух- или трёхмерное). Метод моделирует каждый объект высокой размерности двух- или трёхмерной точкой таким образом, что похожие объекты моделируются близко расположенными точками, а непохожие точки моделируются точками, далеко друг от друга отстоящими.

#предобработка_данных

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/330

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.

The S&P 500 slumped 1.8% on Monday and Tuesday, thanks to China Evergrande, the Chinese property company that looks like it is ready to default on its more-than $300 billion in debt. Cries of the next Lehman Brothers—or maybe the next Silverado?—echoed through the canyons of Wall Street as investors prepared for the worst.

Библиотека собеса по Data Science | вопросы с собеседований from it


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA